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Abstract
In this study, we investigate different cache fault tol-

erance techniques to determine which will be most effec-
tive when on-chip memory cell defect probabilities exceed
those of current technologies, which is highly anticipated
in processor on-chip caches manufactured with future
nanometer scale technologies. Our most significant find-
ing from this study is that the devices in on-chip memory
cells cannot be scaled at the same rate as devices in logic
circuits due to the increasing number of erroneous mem-
ory cells with voltage scaling, requiring strong fault-toler-
ance techniques. Second, we propose a technique to
minimize performance impacts under aggressive technol-
ogy and voltage scaling. It works by merging pairs of
faulty cache lines to make good lines and performs better
than TMR at high error rates and at lower cost. We also
estimate up to 28% energy savings at low voltage, relative
to a recent fault-tolerance scheme [1].
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1. Introduction

As microarchitects demand larger on-chip caches for
higher performance, continuous device scaling has pro-
vided improved memory density for multi-megabyte
upper-level on-chip caches at a reasonable die cost. How-
ever, the device scaling comes at a price. The reduced
device feature size causes exponentially increasing sub-
threshold and gate-leakage power problems in on-chip
caches fabricated with sub-90nm process technology
resulting in more static power consumption [2]. Further-
more, process parameter variations have worsened yield
problems in on-chip caches manufactured with sub-90nm
technology [3]. These include random dopant fluctuations
and oxide defects.

To overcome low yield problems caused by scaling
device sizes and integrating more on-chip memory cells,
there have been several proposed techniques. One is to
implement redundant memory columns; there are one or
two redundant columns per memory sub-bank or sub-
array. If a defective cell is found during the manufacturing
test, the entire column containing the defective cell is
replaced with a redundant column. This wastes many
memory cells to fix one defective cell and requires fuses
to replace the column containing the defective cell with
the redundant column. The second technique is to use
error correction codes (ECC). Currently, a single error

correction (SEC) and double-error detection (DED) tech-
nique is used. Even though this can fix one defective cell
per sub-array row, the memory array is made more vulner-
able to soft errors since the correction capability of the
code has been used up by fixing defective memory cells.
The third technique is to disable a part of the on-chip
cache memory array resulting in a smaller capacity. An
example is the Intel Celeron processor. It is very similar to
the Pentium processor, but has all or half of the L2 cache
disabled as a result of memory sub-arrays containing
defective cells that could not be fixed using the redundant
columns in the disabled part of the on-chip cache memory
block. All of these techniques are only effective when
there are a small number of defective cells in the on-chip
cache. However, the number of defective cells in large on-
chip caches will rise if we want to continue scaling mem-
ory cell size along with technology scaling.

Hard-wired redundancy is becoming a less attractive
option due to limited area available for spare memory
cells. In addition, it will no longer be possible to find a
single set of cache blocks which consistently fail at each
operating point [3].

Under aggressive voltage scaling and on-chip mem-
ory cell sizing, we show that higher defect rates with exist-
ing fault tolerance schemes result in significant processor
performance degradation. A dynamic voltage scaling
(DVS) environment adds to the complexity of working
with on-chip caches containing unpredictable defective
memory cells; as the operating voltage changes, so does
the number of defective cells.

In this paper we begin with an analysis of L2 cache
activity in a modern processor architecture based on the
Intel Pentium 4. Emphasis is placed on L2 caches because
of their widespread use and relatively large area compared
to L1 (L1 caches are also relevant, and the error analysis
within this paper can also be applied to other levels
besides L2). We show the impacts of defective cache
blocks on performance and compare ways of addressing
this problem. The major contributions of this paper are;

® Trade-off analysis between performance and area

for different cell sizes and fault-tolerance tech-
niques.

® A novel cache block grouping scheme for good per-
formance at higher fault probabilities.
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The rest of the paper is organized as follows. Section 2
presents related work and explains in detail the basic fault-
tolerance scheme upon which this work is based. Section 3
explains the problems encountered with on-chip cache
memory reliability in new processes and its impact on per-
formance of set-associative caches when defects are
present. Based upon this analysis, we show existing and
proposed techniques of reducing performance impacts in
the presence of defects in on-chip caches in Section 4. The
techniques are compared in Section 5, and concluding
remarks are presented in Section 6.

2. Related Work

Pour et al. [4] derive an analytical model of the per-
formance loss of a set-associative cache given a set of
defective blocks. They employ an extra “valid” bit per
cache block to identify whether or not it is defective. Their
key findings for caches of size up to 32 KB are that miss
ratio increase is negligible unless a set is completely dis-
abled by faults.

In [5] they present a model to estimate memory-fail-
ure probability using combined row and column redun-
dancy.

The Power4 architecture [6] employs parity on L1
caches and Hamming codes on L2. In addition, L1 and L2
have spare bits, while L3 has redundant cache lines. If cor-
rectable error thresholds are exceeded, a cache line delete
function allows up to 2 deletions per L3 cache. For defects
detected at power-on BIST that cannot be handled, the L3
cache is disabled.

The Nanobox [7] applies redundancy and other ECC
codes to logic functions built using lookup tables.

A technique for memory self-repair at high defect
densities is presented in [8]. It relies upon prior knowledge
of the polarity of the error (i.e. faults are always stuck at 0
or 1). In our cache application, the scheme will not work
because the value read from faulty bits is unpredictable
and can change with operating point (e.g. voltage or tem-
perature).

Agarwal et al. [1] noted that the number of defective
cells and their location changes depending on operating
voltage. In addition, they proposed a cache block re-map-
ping technique for direct-mapped caches. The technique
relies on a defective block mapping table determined prior
to execution using BIST. They consider the use of block
re-mapping in conjunction with ECC and row redundancy.
Because we often refer to this scheme in the paper, it is
explained in more detail as follows. Figure 1 is the same
figure as Figure 7 in [1] and illustrates the fault tolerance
scheme presented in that work. It is based on a direct-
mapped cache consisting of lines organized in rows and
columns. Rows are addressed as usual using part of the
incoming address. However, the column address may be
re-mapped to avoid a known faulty block. This is achieved

Figure 1.  The one bit implementation (OBI)
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Figure 2.  Normalized cell failure rates.
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by performing a look-up in the “config storage” which
contains a map of defective block locations. In this
instance, there is one bit per block (hence one bit imple-
mentation, or OBI) which is set to 1 if the corresponding
block is defective. When the cache is accessed, the con-
troller uses the OBI to select a non-defective column to
store data to, using a fixed mapping. Additional bits are
required in the tag to indicate the column in which data is
stored. This prevents faulty blocks from being read.

3. Impact of On-Chip Cache Failure Rate
on Processor Performance

3.1 On-Chip Cache Device Scaling and Failure
Rate
Figure 2 shows normalized on-chip memory cell fail-
ure rates for 3 different memory cell sizes (A, B and C
with relative areas of 1, 1.25, and 1.5, respectively) as a
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Table 1: MS CPU configuration (2 GHz clock).
Parameters Value
pipeline width 4
branch prediction / BTB | hybrid, 4-way, 2K entries

ROB / LSQ size 196 / 32 entries

INT ALUs/multi-divs/

mem ports 6/2/4

FP ALUs / multi-divs 4/2

INT: mul 3, div 20, all others 1

functional unit latencies .
FP: adder 2, mul 4, div 12, sqrt 24

IL1 cache 16KB, 2-way, 64B blocks, 1-cycle lat.
DLI1 cache 16KB, 2-way, 64B blocks, 3-cycle lat.
L2 cache 1MB, 8-way,64B blocks, 19-cycle lat.

memory bus / latency 16 bytes with 6-cycle lat. / 100 cycles

function of memory cell supply voltage. Note that depend-
ing on how we tune the sizes of the 6 transistors in the
memory cell, the result varies significantly. They are
obtained using Monte-Carlo simulations on memory cells
designed with a 45nm technology and process parameter
variations corresponding to the technology. The failure
rate we assume is significantly higher than the data pre-
sented in other work [1], however the increased failure
rates can be expected in future smaller semiconductor pro-
cess technology (e.g., 32nm technology). As shown in
Figure 2, as either voltage or cell size decreases, the fail-
ure rate starts to increase exponentially. In other words, a
larger cell can achieve a much lower voltage at the same
failure rate. Finally, defect rate is proportional to die size.
Hence, when we integrate more on-chip memory cells on
a die along with device scaling, there will be a much
greater chance that some memory cells contain defects
and fail during post-manufacturing tests resulting in poor
yield. The next section examines the relationship between
on-chip cache memory cell failure and performance
impact to determine the number of tolerable, non-cor-
rected faults.

3.2 Performance Impact of Set-Associative

Cache Defects

To assess the impact of faulty cache blocks, we exam-
ine the performance of standard benchmarks on a realistic
processor. All data was obtained using the M5 simulator
[10]. The simulator was configured to represent a modern
out-of-order pipeline with similar specifications to a Pen-
tium 4 (Table 1). The memory latency is relatively low,
although this will not significantly affect L2 miss rates.

Figure 3 presents the impact of defective blocks on
IPC in L2 (each containing 1 or more defective cells). We
use the SPLASH-2 benchmark suite [11] as a workload

representative of both memory and compute-intensive
applications. Defective block locations are allocated ran-
domly, but consistently between benchmarks. The LRU
replacement algorithm was modified so that defective
(non-correctable) blocks are disabled, identical to the
scheme in [12]. The data in Figure 3 confirms the previous
study [4] in that high block failure rates are required
before there is any significant performance penalty. With
this in mind, the next section compares existing and our
fault-tolerance techniques for their performance and area
at significant failure rates.

4. Comparison of Fault-Tolerance

Techniques

The one-bit-implementation (OBI) mapping table
model [1] is effective for low failure rates, but for higher
rates we show that it rapidly becomes ineffective. We aim
to allow more faults with stronger error correction, and
observe the trade-off with area cost. In this section we
derive an analytical model representing the fraction of
good blocks remaining in the cache at different cell failure
probabilities (and sizes). In the error models we consider
tag bits as additional bits contained in each block.

We compared several cache fault-tolerance schemes
in order to determine their area efficiency at different error
rates (voltages and cell sizes). The model used represents
the fraction of fault-free blocks available in the cache,
denoted by F,, ;- As a minimum, we decided to first
apply the OBI scheme, followed by other error correction.
From a storage standpoint, OBI provides the minimum
data needed to identify where faulty blocks are, for avoid-

Figure 3.  IPC as a function of #disabled blocks
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Table 2: Candidate fault-tolerance schemes.
Schemes SEKH;%" Description
OBI 1.002 One-Bit Implementation from [1]
Hamming SEC 1.020 Single Error Correcting Hamming code.
BCH DEC 1.037 Double Error Correcting BCH code.
Bad block table contains index of one
bad bit and a spare cell to store the value
log(B) 1.022 of that faulty bit. If there is more than
one defective bit, the block is disabled.
Triple-modular Faulty blocks are combined in groups of
redundancy 1.002 3 inside the 1MB cache with a majority
(TMR) vote on each bit.
Pairs of faulty blocks are combined to
Block grouping | up to form single good blocks. A paired block
(GRP2) 1.528 is “good” if there is only one faulty bit
for each corresponding pair of 2 bits.

ance. Since it has already been proven superior to redun-
dant rows and SECDED ECC, all of our models build on
the OBI baseline. OBI does not affect the cache access
time and has minimum effect on processor performance
[1]. Throughout the paper we refer to py,,;, as the proba-
bility of failure of a single on-chip memory cell. Cell fail-
ures are assumed to be independent. As a first
approximation this assumption is valid and has been
widely used in other published cache-error related work
([11[5108D)-

To improve the effectiveness of schemes requiring an
additional storage table (e.g. OBI) which must contain
correct bits, we introduce a factor OBIff. This factor

reduces the bit failure probability, representing larger size
or higher voltage on-chip cache memory cells (see Figure
2) used specifically for that table. We refer to this as
“guaranteed correct” storage because one fault in this
table could lead to bad cells being accessed. Using large
cells is viable as long as the table does not contain too
much data. In addition, delay does not vary significantly
with cell size. “Basic storage” refers to the cells used in
the cache itself.

The fault-tolerance schemes (Table 2) were chosen
from a range of candidates, most of which are widely used
today. We only model storage-related reliability while
logic reliability is beyond the scope of this paper. The fol-
lowing sections explain the fault model and storage over-
head of each scheme.

Each cache consists of M sets and N ways where each
block contains B bits (including tag bits).

We also derive an area efficiency E,,,, which takes
into account the probability of failure of the “guaranteed
correct” storage which includes the OBI table and any

additional bits added by a scheme which must be correct
for the cache to operate reliably. The fraction of available
blocks is divided by die area consumed by all SRAM
cells, then scaled by the probability of the guaranteed cor-
rect storage containing no faults (EQ 1).

Favai/
area

E =

area

xpnongﬁzultyﬁGC (EQ 1)
The p,op fauiry e value is the probability that the guarran-
teed correct cells are fault-free, as a function of the proba-
bility of the large-size cell failure pg,,;; ¢ and the number
of guaranteed correct bits (GC_bits).

GC _bits

(EQ2)

Puon_faulty GC ~ ¢ _pfaulthC)
In all of these schemes,
Ppatt 6= OBLy X Pr =107 X pry.
4.1 Existing fault-tolerance schemes

411 OBI

The “one bit implementation” consists of a table of bits,
one per block, indicating whether or not each block con-
tains 1 or more faulty bits. All of our schemes incur this
storage overhead, because we use an OBI to indicate
whether a block can be corrected or is unusable and can-
not be accessed.

Storage overhead
GC _bits =M x N bits (guaranteed correct storage).

Fault model

The probability of a faulty bit is pg,,;,. The probability of a
non-faulty block is the likelihood of every bit being fault-
free in that block. For our typical-case analysis, we
assume that this probability represents the fraction of non-
faulty cache blocks, as follows;

B
Favail = _p_/bult) (EQ3)

41.2 SEC
Single error correcting (SEC) codes were included due to
their widespread use in existing devices.

Storage overhead
b = [log,(B)] (EQ 4)

where b is the number of added ECC bits per cache block
(basic storage).

Fault model

The model is modified to account for the increased block
size (for check bit storage) and the ability to correct 0 or 1
bits.

_ B+h  (B+b B+b-1
Favail Y 7pﬁzult) +( 1 ) X Pfautr * ¢ 7pﬁmlt) (EQ5)

IEE |-:

COMPUTER
SOCIETY

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007 IEEE

Authorized licensed use limited to: University of Michigan. Downloaded on October 21, 2008 at 07:54 from IEEE Xplore. Restrictions apply.



4.1.3 BCH (DEC)

The BCH error correcting code was selected as a can-
didate DEC scheme. Alternatives such as Reed-Solomon
and Golay codes are mentioned in [13]. BCH was chosen
because of its low storage overhead. However, in practise
a less compute-intensive code can be used depending on
the sensitivity of performance on L2 latency. We modelled
a DEC BCH code storage overhead based upon the equa-
tions in [14].

Storage overhead
b = 2x[log,(B)] (EQ 6)

where b is the number of added ECC bits per cache block
(basic storage).

Fault model

The probability of a faulty block is modified to account
for the extra check bit storage and the ability to correct 2
bits.

Fopait = U =pp)” "+ (EQ7)

avail —

B+b Bt+b-1
( I )praultx(] =P fauts) +

B+b 2 B+b-2
2 ) *Paui™ (' =P i)

414 Log(B)

The log(B) scheme is an alternative single-error-correcting
SEC scheme. A table stores the index of one faulty cell
location per block, along with an additional bit to hold the
correct state of that cell. This is equivalent to the distant
repair scheme of [9] using one spare unit. The model
equations are similar to SEC.

4.1.5 Triple Modular Redundancy (TMR)

Our triple modular redundancy implementation assigns
faulty blocks to groups of 3 blocks with a majority vote on
every bit (0 or 1 errors can be corrected per bit position).
At most, 1/3 of logical bits can be recovered from the
physical bits which are combined for a majority vote. In a
hardware implementation, the bit comparison for the
majority vote is performed at the final cache output stage.
Therefore logic overhead will be small.

Storage overhead

No additional storage is allocated to identify which
blocks are combined for TMR. For this ‘typical case’ anal-
ysis, we assume that faulty blocks are combined with
other arbitrarily located faulty blocks.

Fault model

We first consider each bit index as 3 bits which must
have 0 or 1 faults to be corrected. This applies for all B bit
indexes. However, because we only combine known faulty
blocks after determining fault-free blocks, none of the
three blocks are ever error-free and this probability

(» 200 4) 1s subtracted from the main expression. The prob-

ability of a non-faulty blocks is P = (1 fpﬁm,t)B .
(EZ? 8)
3 2, (2
Pgood = (])pnﬂ)[(l 7pfault) + (1) ( 7pfault) X pﬁzult:|

=31 =Py Pugp) = 2Py’

fraction_repaired ry;pn =

(EQ9)
1 3 2 B
3% (((J Pt * =Pt T =Pty ) *Pgoad)
Fyvait = Pupy t (1 7pnﬂ,) x fraction_repairedy ), (EQ 10)

4.2 Proposed Fault-Tolerance Scheme

4.2.1 Block Grouping

For high error rates, we propose a new scheme (Figure 4).
Faulty physical blocks are grouped together (in groups of
size G) to form a new, fully working logical block. In the
rest of our analysis, we assume pairs (G=2). Using larger
groups is beneficial at extremely high error rates, but the
analysis is beyond the scope of this paper. The concept is a
similar to [8] except that knowledge of failure polarities is
not required.

Compatible blocks have up to one faulty bit between
them, at every corresponding bit index. This means that an
additional “selector bit,” which is known to be correct, can
specify which bit contains a good value when reading
data.

A “grouping table” is accessed as an additional step
before a cache access, to identify the paired block.

® To read a grouped block, all blocks in the group are
read. The selector bits then indicate which block in
the pair contains good data, at each bit index. A
single logical block is then returned to the proces-
SOr.

* To write a grouped block, the same value is written
to every component block.

Grouping table

This table is used to look up the location of the other
block in a group. If there is more freedom to combine
faulty blocks that are compatible, more blocks can be
recovered. They can be physically adjacent, in the same
set or in any location inside the cache (depending on the
desired complexity of block selection hardware). Each
alternative has performance tradeoffs, discussed later.
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Figure 4.  The proposed block grouping scheme.
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Selector bit table

Selection of the block which the data bit is read from
is performed using a table of selector bits. These are stored
in guaranteed correct cells, and can either cover every bit
index in the block (50% storage overhead for groups of
size 2) or a small number of adjacent bits. Using fewer
selector bits reduces the number of defects which can be
tolerated but reduces storage overhead. For example, a
single selector bit covering two adjacent data bits cannot
handle the case where there is a fault in both blocks at that
position. Later, we discuss off-chip caching of selector
bits to reduce the die area of on-chip SRAM.

Table configuration

The tables are programmed during system start-up.
Self-test routines determine whether cache cells are oper-
ating reliably at each voltage and frequency point, and the
map is stored in main memory or on disk. When perfor-
mance settings change, the cache is flushed and a new
selector table loaded. These tables could also be hard-
wired at manufacturing test.

Storage overhead

We call the first block to be accessed the “primary”
block, and its paired compatible block the “secondary”
block. For the grouping table, we first consider the most
storage-intensive scenario where blocks are paired any-
where in the cache. The grouping table has a number of
entries equal to the number of blocks in the cache. Each
entry stores the set and way index of a compatible block,
to be looked up on a read access. The equation below
assumes that there is an entry pointing to another block for
every block position in the cache.

group_table_size = M x N x log,(M x N) (EQ 11)

As a lower-cost alternative, the storage requirement for
pairs limited to the same set is given below. When imple-
mented as an associative look-up, half of the blocks in a
set have a pointer to another block in the same set.

N
=X

group_table_size = 5 log,(N)x M

(EQ 12)
Instead of using a grouping table, one could use the exist-
ing tag matching mechanism to simultaneously hit multi-
ple blocks of the same group since their address tags are
identical. It requires that the group resides in a single set
so that address indexes are identical for each block. A
banked cache design where ways are in different banks
would allow fast parallel access to a group of blocks. A
sequential access model is still feasible however, because
an extra cycle to look up a secondary block does not sig-
nificantly impact performance for low-level caches (e.g.
L2). Another, less effective zero-overhead alternative is to
use a fixed grouping, for example, pairing together adja-
cent blocks.

The error-correcting ability of two variants are shown
in Figure 5. The results were derived from simulation, and
pairs were formed using a greedy algorithm that allocates
each faulty block with the next free compatible faulty

Figure 5.
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block in sequential order. An optimal grouping will be
even more effective.

It is clear that arbitrary pairing (Figure 5(a)) is most
effective at high error rates, although the per-set limitation
(Figure 5(b)) can be almost as effective. Increased asso-
ciativity helps in this case by providing more pairing alter-
natives and can be seen in processors such as Niagara,
with a 12-way L2 cache [15].

The number of selector bits (used to choose one good
bit from a group of G bits at each bit index) is the loga-
rithm of the number of bits in the group. There are B
selectors per cache block, and (M *xN)/G logical blocks
after grouping.

Mx N
G

selector_bits = x (log,(G) x B) (EQ 13)
where G is the number of blocks in each group.
GC bits =M x N + group_table_size + selector_bits

(guaranteed correct storage).

Fault model
The parameter G can be varied, but all analysis in this
paper uses block pairs (G=2).

2 2
pgoud = p}sz+(1)pnfbx(17p;sz) (EQ 14)

. . 1 2 B
fraction_repaired ;pp, = 3 x ((1 7pfault) 7pguod) (EQ 15)

Fouil = Pt (1 —pnﬂ’) x fraction_repaired;pp, (EQ 16)

Each logical bit is formed from two bits. A set of two
faulty physical blocks are compatible and can be recov-
ered into a single logical block when;

* At most one of the grouped bits at each bit index are

faulty, and

® This is true at every bit index in the block of B bits
Note that we make an adjustment p,,,, to remove

the impossible cases where any block contains no faults,
as per TMR.

4.2.2  Selector Bit Caching for Block Grouping
Compared with the other schemes, block grouping has
strong fault tolerance characteristics but a potentially large
storage overhead. By caching the working set of selector
bits in on-chip SRAM and keeping less frequently used
bits off-chip, we show that area overheads can be reduced
without significant performance impact.

The design in Figure 4 was extended to have the
working set of selector bit pages (stored in a parallel struc-
ture to the TLB) on-chip. On a page fault, we assume that
the page table is accessed from main memory, so access
latency to a small off-chip DRAM holding pages of selec-
tor bits is already accounted for.

Table 3: Selector bit caching results.
Parameters Value
Cache size 1024KB
Linux page size 8KB
Logical bits per selector bit 1
Selector page size 4KB
Full grouping table size / OBI table size 4KB /2KB
Set-restricted grouping table size 3KB
On-chip SRAM selector bit storage 96KB
Off-chip DRAM selector bit storage 512KB
ITLB / DTLB entries 8/16
Selector bit table DRAM throughput 32 bytes / cycle
Total storage overhead of full group table 12.3%
Total storage overhead of set-limited group table 9.9%
Total storage overhead of tag-based grouping table | 9.6%

Using the same M5 configuration as before, we
recorded TLB miss rates for varying numbers of TLB
entries, then derived the performance hit for off-chip
selector bit loading. For more realism and to support vir-
tual memory, the simulator was run in full-system mode
and benchmarks were run to completion under Linux. The
results are given in Table 3. By keeping just the working
set of cache pages in on-chip SRAM we have reduced the
on-die storage overhead from 50% to less than 10%. We
opted to use 24 TLB entries because the performance data
indicated much smaller slowdowns of 2% and 8% respec-
tively for the Cholesky and OceanNonContig benchmarks.
Due to the larger working set of OceanNonContig,
increasing the number of data TLB entries does not signif-
icantly reduce miss rate.

5. Results
The E

area
area efficient scheme is to use an OBI with TMR, as long
as a cell is not scaled below size 1.4. This can be seen in

the figure as the point of greatest £, value. In fact, there

is only a marginal improvement over using an OBI alone.
Therefore, the area overhead of stronger error correction
offsets the benefit of cell shrinking. The off-chip caching
and arbitrary pairing variant was used for the grouping
(GRP2) scheme. Therefore it initially has the worst £,,,,,
value due to the on-chip selector and grouping tables, but
outperforms the others at smaller cell sizes due to superior
fault-tolerance.

In Figure 7 we examine E,,,, and F,,;, as voltage is

metric is shown in Figure 6-(a). The most

varied. This shows the same trends as Figure 6. This
means that cache performance will drop significantly
depending on the fault-tolerance scheme and how far volt-

IEE l-:

COMPUTER
SOCIETY

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007 IEEE

Authorized licensed use limited to: University of Michigan. Downloaded on October 21, 2008 at 07:54 from IEEE Xplore. Restrictions apply.



Figure 6. E ., in (a) and F,,,; in (b) with device scaling at 1.1V (64-byte block size). Cell size is relative to the

smallest considered size from Figure 2.

—+- 0Bl =~ GRP2 o~ SEC -e-Log(B) -« TMR -+ DEC

Earea (x10%)

1.2 1.3 1.4
Relative cell size
(@) Egrea

age is scaled in low-power (or low activity) modes. CPUs

using DVS should dynamically select a fault tolerance

scheme with the highest F

avai

1.0 1.6

, at the operating voltage.

For example, Figure 7(b) indicates that DEC should be
used down to 0.86V and GRP2 below that.

5.1 Energy Saving using Block Grouping at low
A\
An example of the energy benefits of block grouping
is as follows. In an ultra-low voltage mode of 0.76V (Fig-
ure 7(b)) conventional SEC code has an F,,,; of around

1.2
-~ OBI % GRP2 -4 SEC -e-Log(B) < TMR - DEC
1.0
0.8 -
% 0.6
w
0.4
0.2
0.0 - T T T T
1.0 1.1 1.2 1.3 1.4 1.5
Relative cell size
(b) Favail

0.02 while GRP2 is approximately 0.45. This means that
GRP2 provides much more L2 cache at that voltage,
reducing miss rate and improving IPC. Considering the
Barnes benchmark in Figure 3, IPC for 86% disabled
blocks is at most 1.14 while for grouping the IPC is 1.76
(55% disabled blocks). This means that excution using
grouping completes at least (1-1.14/1.76) = 35% sooner.
Energy savings are offset by the overhead of the
selector bits and grouping table. If these are on-chip, they
will consume approximately 512KB (or half the cache
size). Despite this overhead, there will be a net energy

1.6

Figure 7.

9
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8

7,

Earea (x107)

0.6 141

Voltage

(a) E area

E,.,in (a) and F,,; in (b) with voltage scaling (64-byte block size, Cell size C).

1.2
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0.8
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